Nardelli, M. \& Mangia, A. (1984). Ann. Chim. (Rome), 74; 163-174.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1986). SHELXS86. Program for the solution of crystal structures. Univ. of Göttingen, Germany.
Sheldrick, G. M. (1992). SHELXL92. Program for crystal structure refinement. Univ. of Göttingen, Germany.
Shepherd, M. K. (1988). J. Chem. Soc. Perkin Trans. 1, pp. 961-969.

Acta Cryst. (1993). C49, 1384-1388

# Synthesis and Structure of New Families of Potential Antitumor or Antiviral Agents. II. 1-( $p$-Toluenesulfonyloxy)-3,4:7,8-dibenzotricyclo[3.3.2.0 ${ }^{2,6}$ ]decane 

S. Ianelli and M. Nardelli*<br>Istituto di Chimica Generale ed Inorganica, Università degli Studi di Parma, Centro di Studio per la Strutturistica Diffrattometrica del CNR, Vale delle Scienze 78, I-43100 Parma, Italy<br>D. Belletti

Istituto di Strutturistica Chimica, Università degli Studi di Parma, Centro di Studio per la Strutturistica Diffrattometrica del CNR, Viale delle Scienze 78, I-43100 Parma, Italy
B. Jamart-Grégorire, A. Zouaou and P. Caubère

# Laboratoire de Chimie Organique I, <br> UA CNRS No. 457, Université de Nancy I, BP 239, 54506 Vandoeuvre-Les-Nancy CEDEX, France 

(Received 26 October 1992; accepted 3 December 1992)


#### Abstract

The title compound, 3,4:7,8-dibenzotricyclo[3.3.2.0 ${ }^{2,6}$ ]-dec-1-yl $p$-toluenesulfonate was prepared by the reaction of $4 \mathrm{~b}, 5,6,6 \mathrm{a}, 10 \mathrm{~b}, 10 \mathrm{c}$-hexahydrobenzo[3,4]cyclobuta[1,2$a$ ]biphenylen- 4 b -ol with an excess of $p$-toluenesulfonic acid and its structure determined by X-ray diffraction. The space group, $C c$, is non-centrosymmetric and four chiral centres are present in the molecule (asymmetry in the environment of $S$ also makes this atom chiral) but both enantiomers are present in the crystal as a result of the presence of the $c$ glide. The conformation of the molecule is illustrated and the orientation of the $p$-toluenesulfonic substituent discussed. A systematic asymmetry of the $\mathrm{O}=\mathrm{S}-\mathrm{O}$ angles (which makes sulfur chiral) is observed.


## Comment

As part of our continuing work on new families of antitumor or antiviral agents (Ianelli et al., 1993), we studied the chemical behavior of $4 \mathrm{~b}, 5,6,6 \mathrm{a}, 10 \mathrm{~b}, 10 \mathrm{c}$ -hexahydrobenzo[3,4]cyclobuta[1,2-a]biphenylen-4b-ol (1) in the presence of $p$-toluenesulfonic acid (PTSOH) and observed the reaction shown below.


Compound (1) remained unchanged in the presence of catalytic amounts of PTSOH, and its transformation took place only with an excess of sulfonic reagent. The structure of 1-( $p$-toluenesulfonyloxy)-3,4:7,8-dibenzotricyclo[3.3.2.0 ${ }^{2,6}$ ]decane (2), which could not be determined by classical spectroscopic methods, has been established using X-ray diffraction analysis.

A mechanism explaining the observed transformation has been proposed previously (Zouaoui et al., 1991). The nucleophilic behavior of PTSOH must be emphasized; although it has been observed previously (Caubère \& Mourad, 1974), such behavior is rather unusual.

It is important to note that the structure of (2), which contains a highly condensed polycyclic lipophilic part, should be of interest in obtaining potential new antivirus agents. A similar transformation is presently under investigation.

Fig. 1 shows that the molecule is built up from two fused benzocyclopentene moieties and a dimethylene bridge joining two $\alpha$-C atoms of the cyclopentene rings so as to form a central cyclohexane ring fused with the benzocyclopentene cycles. The $p$-toluenesulfonyloxy substituent is inserted at an apex of the cyclohexane common to the cyclopentene rings.

The relative configurations at the $\mathrm{C} 7 A, \mathrm{C} 7 B$ and $\mathrm{C} 8 A$ chiral centres are $R, S$ and $R$, respectively; the enantiomer is also present in the crystal because $c$ glides are present in the structure.

If the $p$-toluenesulfonyloxy substituent is not considered, there is an approximate local twofold axis running along the midpoints of bonds $\mathrm{C} 8 A-\mathrm{C} 8 B$ and $\mathrm{C} 9 A-\mathrm{C} 9 B$. The most significant differences between the bonds are at $C 8 A$ and $C 8 B$ and therefore are probably caused by the presence of the $p$-toluenesulfonyloxy substituent. The difference ( $\Delta / \sigma=3.5$ ) observed between the C3A-C4A and C3B-C4B benzene bonds is probably not real, but is caused instead by the high thermal motion (or disorder) affecting these atoms.

The fusion of the two benzocyclopentene systems, the presence of the dimethylene bridge and the $p$ -


Fig. 1. (a) ORTEP drawing of the molecule with thermal ellipsoids drawn at the $50 \%$ level. (b) Newman projections showing the orientation of the $p$-toluenesulfonyloxy substituent.
toluenesulfonyloxy substituent have some influence on the deformations of the fused benzene rings, as shown in Table 2 where the averaged values of bond distances and angles are compared with data from the literature for the unsubstituted benzocyclopentene system (Benassi, Ianelli, Nardelli \& Taddei, 1991). Significant differences and a tendency for the local mirror symmetry to be destroyed are observed. Unfortunately, the accuracy of the present analysis is not sufficient to permit a more detailed discussion of this point.

The parameters given below describe the conformation of the central fused tricyclic system where ring 1 is composed of the atoms $\mathrm{C} 8 A, \mathrm{C} 7 A, \mathrm{C} 6 A, \mathrm{C} 1 A, \mathrm{C} 8 B$, ring 2 of $\mathrm{C} 8 B, \mathrm{C} 7 B, \mathrm{C} 9 B, \mathrm{C} 9 A, \mathrm{C} 7 A, \mathrm{C} 8 A$, and ring 3 of $\mathrm{C} 8 B$, $C 7 B, C 6 B, C 1 B$ and $C 8 A ; Q_{T}$ is the total puckering amplitude (Cremer \& Pople, 1975) and ADP the asymme-
try displacement parameter (Nardelli, 1983b). They are in agreement with the approximate local twofold symmetry.

| Ring | $Q_{T}(\AA)$ | ADP | Conformation |
| :---: | :--- | :--- | :--- |
| 1 | $0.452(6)$ | $\Delta_{S}(C 8 A)=0.013(4)$ | Envelope |
| 2 | $0.724(6)$ | $\Delta_{2}(C 8 B-C 8 A)=0.006(3)$ | Distorted chair |
| 3 | $0.420(6)$ | $\Delta_{S}(C 8 B)=0.008(4)$ | Envelope |

The orientation of the $p$-toluenesulfonyloxy substituent is determined mainly by intramolecular hindrance, as shown by calculations of the non-bonded potential energy when rotating fragments of that substituent about the $\mathrm{O} 3-\mathrm{C} 8 \mathrm{~B}$ and $\mathrm{S}-\mathrm{O} 3$ directions. Indeed, the difference energy* profiles show well defined minima corresponding to the unrotated fragment. Rotation about $\mathrm{S}-\mathrm{C} 1 \mathrm{C}$ gives a minimum some $30^{\circ}$ wide indicating that, in addition to intramolecular hindrance, electronic effects between the phenyl ring and the $S$ atom are probably present also, as previously observed in thiosulfonic esters (Caputo, Palumbo, Nardelli \& Pelizzi, 1984).

The Newman projections in Fig. 1 show that the O3C8B bond (which joins the $p$-toluenesulfonyloxy substituent to the polycyclic system) is synperiplanar with respect to the $\mathrm{S}-\mathrm{O} 2$ bond and antiperiplanar to $\mathrm{S}-\mathrm{O}$, while $\mathrm{S}-\mathrm{O} 3$ is synclinal to $\mathrm{C} 7 B-\mathrm{C} 8 B$ and antiperiplanar to $\mathrm{C} 8 B-\mathrm{C} 8 A$. The phenyl ring is oriented so as to be synperiplanar (approximately eclipsed) with respect to the $\mathrm{S}-\mathrm{O} 2$ bond, and synclinal to $\mathrm{S}-\mathrm{O} 1$ and $\mathrm{S}-\mathrm{O}$.

[^0]Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

| $U_{\text {eq }}$ | is defined as one third of the trace of the orthogonalized $U_{i j}$ tensor. |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
|  | $x$ | $y$ | $z$ | $U_{\text {eq }}$ |
| S | 0.61999 | $0.2391(2)$ | 0.18490 | $0.0602(6)$ |
| O1 | $0.6392(4)$ | $0.1339(5)$ | $0.2558(4)$ | $0.0801(19)$ |
| O2 | $0.6641(4)$ | $0.3699(5)$ | $0.1970(4)$ | $0.0700(16)$ |
| O3 | $0.6461(3)$ | $0.1635(4)$ | $0.0956(3)$ | $0.0580(13)$ |
| C1 $A$ | $0.7767(4)$ | $0.2496(7)$ | $0.0129(4)$ | $0.0557(22)$ |
| C2A | $0.8465(5)$ | $0.2736(7)$ | $0.0883(4)$ | $0.0649(24)$ |
| C3A | $0.9383(5)$ | $0.2745(8)$ | $0.0683(6)$ | $0.0764(28)$ |
| C4A | $0.9636(6)$ | $0.2582(8)$ | $-0.0193(6)$ | $0.0782(30)$ |
| C5A | $0.8939(6)$ | $0.2333(8)$ | $-0.0953(5)$ | $0.0757(32)$ |
| C6A | $0.8015(5)$ | $0.2278(7)$ | $-0.0747(5)$ | $0.0552(23)$ |
| C7A | $0.7135(5)$ | $0.2041(8)$ | $-0.1424(4)$ | $0.0623(23)$ |
| C8A | $0.6482(5)$ | $0.1412(7)$ | $-0.0742(4)$ | $0.0539(22)$ |
| C9A | $0.6757(5)$ | $0.3469(7)$ | $-0.1772(5)$ | $0.0662(26)$ |
| C1B | $0.5441(4)$ | $0.1707(7)$ | $-0.0981(4)$ | $0.0543(21)$ |
| C2B | $0.4751(5)$ | $0.0875(8)$ | $-0.1476(5)$ | $0.0690(25)$ |
| C3B | $0.3858(6)$ | $0.1438(9)$ | $-0.1607(5)$ | $0.0772(30)$ |
| C4B | $0.3647(6)$ | $0.2664(9)$ | $-0.1313(5)$ | $0.0805(32)$ |
| C5B | $0.4348(5)$ | $0.3533(8)$ | $-0.0815(5)$ | $0.0699(25)$ |
| C6B | $0.5234(5)$ | $0.2971(7)$ | $-0.0667(4)$ | $0.0542(21)$ |
| C7B | $0.6132(5)$ | $0.3656(6)$ | $-0.0199(5)$ | $0.0548(21)$ |
| C8B | $0.6722(4)$ | $0.2377(6)$ | $0.0109(4)$ | $0.0488(17)$ |
| C9B | $0.6598(5)$ | $0.4413(7)$ | $-0.0959(4)$ | $0.0654(25)$ |
| C1C $C$ | $0.4977(5)$ | $0.2599(7)$ | $0.1614(4)$ | $0.0497(20)$ |
| C2C | $0.4457(5)$ | $0.1424(8)$ | $0.1366(5)$ | $0.0646(26)$ |
| C3C | $0.3485(5)$ | $0.1597(8)$ | $0.1155(5)$ | $0.0688(24)$ |
| C4C | $0.3085(5)$ | $0.2837(8)$ | $0.1199(5)$ | $0.0645(26)$ |
| C5C | $0.3609(5)$ | $0.4000(8)$ | $0.1470(5)$ | $0.0756(29)$ |
| C6C | $0.4588(5)$ | $0.3843(8)$ | $0.1676(5)$ | $0.0692(27)$ |
| C7C | $0.2041(6)$ | $0.2983(9)$ | $0.0931(6)$ | $0.0897(31)$ |

Table 2. Comparison of bond distances ( $(\AA)$ and angles ( ${ }^{\circ}$ ) with e.s.d.'s in parentheses

| S-01 | 1.444 (5) | S-02 | 1.414 (5) | Average <br> 1.429 (15) | Literature <br> $1.423(9)^{a}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| S-03 | 1.559 (5) |  |  |  | $1.580(14)^{a}$ |
| S-C1C | 1.772 (7) |  |  |  | 1.750 (10) ${ }^{a}$ |
| O3-C8B | 1.498 (8) |  |  |  | 1.463 (17) ${ }^{\text {a }}$ |
| C1A-C2A | 1.416 (8) | C1B-C2B | 1.409 (9) | 1.413 (6) | $1.388(1)^{\text {b }}$ |
| C2A-C3A | 1.386 (10) | $C 2 B-C 3 B$ | 1.393 (11) | 1.389 (7) | 1.386 (1) ${ }^{\text {b }}$ |
| C3A-C4A | 1.361 (12) | C3B-C4B | 1.302 (12) | 1.332 (30) | 1.384 (1) ${ }^{\text {b }}$ |
| C4A-C5A | 1.423 (11) | C4B-C5B | 1.441 (11) | 1.432 (9) |  |
| C5A-C6A | 1.400 (11) | C5B-C6B | 1.383 (10) | 1.391 (8) |  |
| C6A-C1A | 1.364 (9) | C6B-C1B | 1.345 (9) | 1.354 (10) | 1.393 (1) ${ }^{\text {b }}$ |
| C1A-C8B | 1.510 (9) | C1B-C8A | 1.531 (9) | 1.520 (10) |  |
| C6A-C7A | 1.531 (9) | C6B-C7B | 1.541 (9) | 1.536 (6) |  |
| C7A-C8A | 1.557 (10) | C7B-C8B | 1.535 (8) | 1.544 (11) |  |
| C7A-C9A | 1.544 (10) | $C 7 B-C 9 B$ | 1.532 (10) | 1.538 (7) |  |
| C8A-C8B | 1.546 (8) | C9A-C9B | 1.520 (10) | 1.536 (13) |  |
| C1C-C2C | 1.384 (10) | C4C-C5C | 1.385 (11) | 1.384 (7) | $1.388(13)^{a}$ |
| C1C-C6C | 1.331 (10) | C3C-C4C | 1.331 (11) | 1.331 (7) | 1.375 (14) ${ }^{\text {a }}$ |
| C2C-C3C | 1.413 (10) | C5C-C6C | 1.419 (10) | 1.416 (7) | 1.377 (12) ${ }^{\text {a }}$ |
| C4C-C7C | 1.520 (11) |  |  |  | 1.504 (20) ${ }^{a}$ |
| O3-S-C1C | 102.8 (3) |  |  |  | 103.2 (19) ${ }^{\text {a }}$ |
| S-O3-C8B | 123.7 (3) |  |  |  | 119.6 (24) ${ }^{\text {a }}$ |
| O1-S-C1C | . 108.9 (3) | O2-S-C1C | 110.3 (3) | 109.6 (7) | 109.4 (9) ${ }^{\text {a }}$ |
| O1-S-03 | 102.1 (3) |  |  |  | 104.3 (16) ${ }^{\text {a }}$ |
| O2-S-03 | 111.8 (3) |  |  |  | 109.4 (8) ${ }^{\text {a }}$ |
| $\mathrm{O} 1-\mathrm{S}-\mathrm{O} 2$ | 119.4 (3) |  |  |  | 119.8 (8) ${ }^{\text {a }}$ |
| C6A-C1A-C8A | 109.5 (5) | C 6 - $\mathrm{C} 1 B-\mathrm{C} 8 A$ | 110.0 (6) | 109.7 (4) | 110.4 (1) ${ }^{\text {b }}$ |
| C2A-C1A-C8B | 130.6 (5) | $\mathrm{C} 2 B-\mathrm{C} 1 B-\mathrm{C} 8 A$ | 128.9 (6) | 129.9 (8) | 128.9 (4) ${ }^{\text {b }}$ |
| C2A-C1A-C 6 A | 119.8 (6) | $\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}$ | 121.0 (6) | 120.4 (6) | 120.6 (6) ${ }^{\text {b }}$ |
| $\mathrm{C} 1 A-\mathrm{C} 2 A-\mathrm{C} 3 A$ | 117.2 (6) | $\mathrm{C} 1 B-\mathrm{C} 2 B-\mathrm{C} 3 B$ | 116.0 (7) | 116.7 (6) | 118.6 (2) ${ }^{\text {b }}$ |
| C2A-C3A-C4A | 123.6 (7) | $\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$ | 123.8 (8) | 123.7 (5) | 120.8 (2) ${ }^{\text {b }}$ |
| C3A-C4A-C5A | 119.5 (8) | $\mathrm{C} 3 B-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 5 B$ | 120.8 (8) | 120.2 (6) |  |
| C4A-C5A-C6A | 116.9 (7) | C4B-C5B-C6B | 115.8 (7) | 116.4 (6) |  |
| C1A-C6A-C5A | 123.0 (6) | $\mathrm{C} 1 B-\mathrm{C} 6 \mathrm{~B}-\mathrm{C} 5 B$ | 122.6 (6) | 112.8 (4) |  |
| C5A-C6A-C7A | 127.9 (6) | C5B-C6B-C7B | 128.2 (6) | 128.0 (4) |  |
| C1A-C6A-C7A | 109.1 (6) | $\mathrm{C} 1 B-\mathrm{C} 6 \mathrm{~B}-\mathrm{C} 7 B$ | 109.1 (6) | 109.1 (4) |  |
| C6A-C7A-C8A | 100.0 (5) | C6B-C7B-C8B | 101.3 (5) | 100.6 (6) |  |
| C6A-C7A-C9A | 108.2 (5) | $\mathrm{C} 6 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}-\mathrm{C} 9 \mathrm{~B}$ | 107.8 (5) | 108.0 (4) |  |
| C8A-C7A-C9A | 109.6 (6) | $\mathrm{C} 8 B-\mathrm{C} 7 \mathrm{~B}-\mathrm{C} 9 \mathrm{~B}$ | 108.4 (5) | 108.9 (6) |  |
| C7A-C8A-C8B | 99.6 (5) | $\mathrm{C} 7 \mathrm{~B}-\mathrm{C} 8 B-\mathrm{C} 8 A$ | 100.7 (5) | 100.2 (6) |  |
| C7A-C8A-C1B | 115.7 (5) |  |  |  |  |
| $\mathrm{C} 7 B-\mathrm{C} 8 B-\mathrm{C} 1 A$ | 117.8 (5) |  |  |  |  |
| C 1 B-C8A-C8B | 101.2 (5) | $\mathrm{C} 1 A-\mathrm{C} 8$ - C 8 A | 101.3 (5) | 101.2 (4) |  |
| C7A-C9A-C9B | 111.2 (5) | C7B-C9B-C9A | 112.3 (5) | 111.8 (6) |  |
| O3-C8B-C7B | 115.9 (5) |  |  |  |  |
| O3-C8B-C8A | 107.7 (5) |  |  |  |  |
| O3-C8B-C1A | 111.2 (5) |  |  |  |  |
| S-C1C-C6C | 120.5 (5) | S-C1C-C2C | 117.2 (5) | 118.8 (16) | 119.8 (9) ${ }^{\text {a }}$ |
| $\mathrm{C} 2 \mathrm{C}-\mathrm{ClC}-\mathrm{C} 6 \mathrm{C}$ | 122.3 (7) |  |  |  | 120.3 (10) ${ }^{\text {a }}$ |
| $\mathrm{C1C-C2C-C3C}$ | 117.1 (7) | C1C-C6C-C5C | 119.9 (7) | 118.5 (14) | 119.3 (8) ${ }^{\text {a }}$ |
| $\mathrm{C} 2 \mathrm{C}-\mathrm{C} 3 \mathrm{C}-\mathrm{C} 4 \mathrm{C}$ | 121.4 (7) | $\mathrm{C} 4 \mathrm{C}-\mathrm{C} 5 \mathrm{C}-\mathrm{C} 6 \mathrm{C}$ | 118.3 (7) | 119.8 (15) | 121.6 (8) ${ }^{\text {a }}$ |
| $\mathrm{C} 3 \mathrm{C}-\mathrm{C} 4 \mathrm{C}-\mathrm{C5C}$ | 120.9 (7) |  |  |  | 117.9 (9) ${ }^{\text {a }}$ |
| $\mathrm{C} 3 \mathrm{C}-\mathrm{C4C}-\mathrm{C} 7 \mathrm{C}$ | 119.6 (7) | $\mathrm{C5C}-\mathrm{C} 4 \mathrm{C}-\mathrm{C} 7 \mathrm{C}$ | 119.5 (7) | 119.6 (5) | 121.0 (12) ${ }^{\text {a }}$ |

Notes: (a) averaged values from $58 p-\mathrm{CH}_{3} . \mathrm{C}_{6} \mathrm{H}_{4} . \mathrm{SO}_{2} . \mathrm{O} . \mathrm{C}\left(s p^{3}\right)$ fragments with $R 1<0.07$ and $\sigma[d(\mathrm{C}-\mathrm{C})]<0.01 \AA$ retrieved from the Cambridge Structural Database (Allen et al., 1979); (b) values from Benassi et al. (1991).

It is interesting to note that there is a significant difference between the angles $\mathrm{O} 1-\mathrm{S}-\mathrm{O} 3$ and $\mathrm{O} 2-\mathrm{S}-\mathrm{O} 3$ ( $\Delta=9.7^{\circ} ; \Delta / \sigma=22.9$ ); this kind of asymmetry, which makes the $S$ atom chiral, seems peculiar to this part of the substituent, as shown by the averaged data from the literature (July 1992 release of the Cambridge Structural Database; Allen et al., 1979) quoted in Table 2. The same kind of asymmetry has been observed in thiosulfonic esters (Caputo et al., 1984) and in $N$-sulfonylsulfilimines containing the $R-\mathrm{SO}_{2}-\mathrm{N}=$ system (Kálmán, Parkanyi \& Kucsman, 1980).

Packing is determined only by van der Waals contacts.

## Experimental

Crystal data
$\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{~S}$
$\mathrm{Cu} K \alpha_{1}$ radiation
$M_{r}=402.51$
Monoclinic
Cc
$a=14.434$ (6) $\AA$
$b=9.637$ (2) $\AA$
$c=14.398(7) \AA$
$\beta=96.34$ (2) ${ }^{\circ}$
$V=1991(1) \AA^{3}$
$Z=4$
$D_{x}=1.343 \mathrm{Mg} \mathrm{m}^{-3}$
$\lambda=1.540562 \AA$
Cell parameters from 29 reflections
$\theta=20.08-39.38^{\circ}$
$\mu=1.592 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Small prisms
$0.39 \times 0.28 \times 0.23 \mathrm{~mm}$ Colorless

## Data collection

Siemens-AED diffractometer
$\theta-2 \theta$ scans
Absorption correction:
none
3676 measured reflections
2534 independent reflections
1423 observed reflections
[ $I>2 \sigma(I)]$
$R_{\text {int }}=0.0986$

$$
\begin{aligned}
& \theta_{\max }=70.20^{\circ} \\
& h=-10 \rightarrow 17 \\
& k=0 \rightarrow 11 \\
& l=-17 \rightarrow 17 \\
& 1 \text { standard reflection } \\
& \text { monitored every } 50 \\
& \text { reflections } \\
& \text { intensity variation: within } \\
& \text { statistical fluctuation }
\end{aligned}
$$

## Refinement

Final $R 1=0.0655$ for
$F_{o}>4 \sigma\left(F_{o}\right)$
$w R 2=0.1519$ for $F^{2}$ data
$S=0.864$ for all $F^{2}$ data
2516 reflections
266 parameters
Calculated weights $w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0676 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.002$
$\Delta \rho_{\text {max }}=0.437 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.368 \mathrm{e}^{-3}$
Refinement on $F^{2}$ for all reflections except those flagged for possible systematic errors; the observed threshold $I>2 \sigma(I)$ is used only for calculating $R$ (obs.) etc. given here for comparison with refinements on $F$.
Cell refinement: LQPARM (Nardelli \& Mangia, 1984). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1986). Program(s) used to refine structure: SHELXL92 (Sheldrick, 1992). Molecular graphics: ORTEP (Johnson, 1965). Software used for geometric calculations: PARST (Nardelli, 1983a). Software used to prepare material for publication: PARST. The calculations were performed using the ENCORE91 and GOULDPOWERNODE 6040 computers of the Centro di Studio per la Strutturistica Diffrattometrica del CNR (Parma).
The integrated intensities were measured using a modified version (Belletti, Ugozzoli, Cantoni \& Pasquinelli, 1979) of the Lehmann \& Larsen (1974) peak-profile analysis procedure. A correction for Lorentz and polarization effects was applied.

The structure was determined by direct methods with SHELXS86 and refined by anisotropic full-matrix least squares on $F$ using SHELX76 and on $F^{2}$ (to have a better ratio between the number of observations and the number of refined parameters) using SHELXL92. The values of the conventional residualerror indices at the end of the $F$ refinement were $R=0.0702$, $w R=0.0820$ and $S=0.930$ for 1428 reflections and 336 refined parameters, while the residual indices obtained in the $F^{2}$ refinement had the values $w R 2\left(=\left\{\Sigma\left[w\left(F_{o}^{2}-F_{c}^{2}\right)^{2}\right] / \Sigma\left[w\left(F_{o}^{2}\right)^{2}\right]\right\}^{1 / 2}\right)=$ 0.1519 for 2516 independent reflections and 266 parameters, $S$ $=0.864$ and $w R 2=0.1849$ for all 2534 reflections ( 18 reflections with $\Delta / \sigma>5$ omitted), $S=1.083$ and $R 1\left[=\Sigma\left|F_{o}-F_{c}\right| / \Sigma\left(F_{o}\right)\right]$ $=0.0655$ for 1423 reflections with $F_{o}>4 \sigma\left(F_{o}\right)$. The absolute structure was determined on the basis of the Flack (1983) parameter $x=-0.01$ (4).

As expected, the e.s.d.'s from the $F^{2}$ analysis are lower than those from the refinement on $F$ because of the larger number of observations and the reduced number of parameters. A further comparison of the results of the two kinds of analysis considered the half-normal probability plot (Abrahams \& Keve, 1971)
calculated using the program ABRAHAMS (Gilli, 1977) for all interatomic distances $<4.65 \AA$ (excluding those involving H atoms) according to De Camp (1973). The parameters of the regression line through the distribution of points in the plot [intercept 0.033 (3), slope 0.687 (3), correlation coefficient $r=0.997$, $N=225$ ] indicate that there are no significant systematic effects and that the pooled standard deviations are overestimated by a factor of about 1.5. In agreement with this finding, no significant differences (i.e. $>3 \Delta / \sigma$ ) are observed for the structural parameters (distances, angles, torsions) derived from the two analyses.

The same analysis performed on the equivalent isotropic atomic displacement parameters gives a plot in which the regression-line parameters [intercept 0.000 (1), slope 0.037 (1), correlation coefficient $r=0.986, N=29$ ] show that the pooled standard deviations are overestimated. This is a consequence of the fact that the differences between the $U_{\text {eq }}$ values from the two refinements are much smaller than their e.s.d.'s.

The anisotropic atomic displacements, analysed in terms of the LST rigid-body model (Schomaker \& Trueblood, 1968; Trueblood, 1978) gave a residual index $R_{w U}\left\{=\left[\Sigma(w \Delta U)^{2}\right]\right.$ $\left.\Sigma\left(w U_{o}\right)^{2}\right]^{1 / 2} ; \Delta U=U_{i j}$ (obs.) $-U_{i j}$ (calc. $\left.)\right\}=0.127$ which improved to 0.100 by considering the internal motions according to Dunitz \& White (1973). The atoms most affected by these motions (or static disorder) are $\mathrm{C} 3 A, \mathrm{C} 3 B, \mathrm{C} 4 B$ and $\mathrm{C} 7 C$, which also show the greatest anisotropies with ratios between the maximum and minimum axes of the displacement ellispsoids larger than 4. These calculations were performed using the $T H M V$ program (Trueblood, 1984).

All the structural parameters discussed in the Comment are from the $F^{2}$ refinements.

The authors are indebted to Professor G. M. Sheldrick who kindly made his program SHELXL92 available to them at the beta-test stage. Financial support from the European Community Commission under contract No. SC1000657 is gratefully aknowledged.

Lists of structure factors, anisotropic thermal parameters, H-atom coordinates and complete geometry together with statistics and CSD bibliographic references for the $p$-toluenesulfonyloxy substituent have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55927 (46 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHl 2HU, England. [CIF reference: AL1032]

## References

Abrahams, S. C. \& Keve, E. T. (1971). Acta Cryst. A27, 157-165.
Allen, F. H., Bellard, M. D., Brice, B. A., Cartwright, A., Doubleday, A., Higgs, H., Hummelink, T., Hummelink-Peters, B. G., Kennard, O., Motherwell, W. D. S., Rodgers, J. R. \& Watson, D. G. (1979). Acta Cryst. B35, 2331-2339.
Belletti, D., Ugozzoli, F., Cantoni, A. \& Pasquinelli, G. (1979). Gestione on Line di Diffrattometro a Cristallo Singolo Siemens AED con Sistema General Automation Jumbo 220. Internal Report 1-3/79. Centro di Studio per la Strutturistica Diffrattometrica del CNR, Parma, Italy.
Benassi, R., Ianelli, S., Nardelli, M. \& Taddei, F. (1991). J. Chem. Soc. Perkin Trans. 2, pp. 1381-1386.
Caputo, R., Palumbo, G., Nardelli, M. \& Pelizzi, G. (1984). Gazz. Chim. Ital. 114, 421-430.
Caubère, P. \& Mourad, M. S. (1974). Tetrahedron, 30, 3439-3445.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

De Camp, W. H. (1973). Acta Cryst. A29, 148-150
Dunitz, J. D. \& White, D. N. J. (1973). Acta Cryst. A29, 93-94.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Gilli, G. (1977). ABRAHAMS. Program for calculating half-normal probability plots. Univ. of Ferrara, Italy.
Ianelli, S., Nardelli, M., Belletti, D., Jamart-Grégoire, B., Mouaddib, A. \& Caubère, P. (1993). Acta Cryst. C49, 1380-1384.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Kálmán, A., Parkanyi, L. \& Kucsman, A. (1980). Acta Cryst. B36, 1440-1443.
Lehmann, M. S. \& Larsen, F. K. (1974). Acta Cryst. A30, 580-589.
Nardelli, M. (1983a). Comput. Chem. 7, 95-98.
Nardelli, M. (1983b). Acta Cryst. C39, 1141-1142.
Nardelli, M. \& Mangia, A. (1984). Ann. Chim. (Rome), 74, 163-174.
Schomaker, V. \& Trueblood, K. N. (1968). Acta Cryst. B24, 63-76.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1986). SHELXS86. Program for the solution of crystal structures. Univ. of Göttingen, Germany.
Sheldrick, G. M. (1992). SHELXL92. Program for crystal structure refinement. Univ. of Göttingen, Germany.
Trueblood, K. N. (1978). Acta Cryst. A34, 950-954.
Trueblood, K. N. (1984). THMV. Program for thermal-motion analysis. Univ. of California, Los Angeles, USA.
Zouaoui, M. A., Mouaddib, A., Jamart-Grégoire, B., Ianelli, S., Nardelli, M. \& Caubère, P. (1991). J. Org. Chem. 56, 4078-4081.

Acta Cryst. (1993). C49, 1388-1392

## Synthesis and Structure of Strained Polycyclic Cyclobutane-Containing Derivatives

S. Ianelli and M. Nardelli*

Istituto di Chimica Generale ed Inorganica, Università degli Studi di Parma, Centro di Studio per la Strutturistica Diffrattometrica del CNR, Vale delle Scienze 78, I-43100 Parma, Italy

## D. Belletti

Istituto di Strutturistica Chimica, Università degli Studi di Parma, Centro di Studio per la Strutturistica Diffrattometrica del CNR, Viale delle Scienze 78, I-43100 Parma, Italy

B. Jamart-Grégore, N. Brosse and P. Caubère

Laboratoire de Chimie Organique I,
UA CNRS No. 457, Université de Nancy I, BP 239, 54506 Vandoeuvre-Les-Nancy CEDEX, France
(Received 18 September 1992; accepted 8 January 1993)


#### Abstract

The compounds cis,anti,cis-8-methoxytricyclo[6.3.0.$\left.0^{2,7}\right]$ undecan-2,3-diol and cis,anti,cis-tricyclo[6.5.0.0 ${ }^{2,7}$ ]-tridec-6-en-13-spiro-2'-[1,3]dioxan-1-ol were obtained


by condensation of ketone enolates with cyclohexadiene generated in situ from 1-chlorocyclohexene. X-ray structure analysis established the conformations of the polycyclic systems, the stereochemistry at the ring junctions and the deformations caused by fusion of the rings. The results of the refinements on $F$ and $F^{2}$ are compared.

## Comment

It was shown for the first time in a work by Caubère \& Brunet (1972) that condensation of a ketone enolate with cyclohexadiene, generated in situ from 1chlorocyclohexene, leads easily to the synthesis of a methylene cyclobutenol with cis,syn,cis structure. Returning to these reactions with the object of finding a new route to polycyclic cyclopentane derivatives, we performed the reactions shown in the scheme below (PTC = phase transfer catalysis).


Compound (3) has not been obtained previously and its formation can be attributed to the new experimental conditions used here (a temperature lower than 273 K and dimethoxyethane). It was first transformed into the corresponding ether which was bishydroxylated into compound (4) (Minato, Yamamoto \& Tsuji, 1990) whose structure could only be established by X-ray analysis. Using this knowledge, it was possible to infer the structure of (3).

Another reaction we considered was the condensation of the enolate of cycloheptanedione monoketal; although this reaction is much less easy than arynic condensation (Grégoire, Carré \& Caubère, 1986), we succeeded in obtaining compound (5) whose stereochemistry could not be determined easily from classical spectroscopic data and was therefore defined by X-ray analysis.

The present paper reports the structures of compounds (4) and (5) which are good starting materials for further transformations (Jamart-Grégoire, Brosse, Caubère, Ianelli \& Nardelli, 1991), for example those of (5) into the rearranged polycyclic derivatives we are currently investigating.

The ORTEP (Johnson, 1965) projections (Fig. 1) show that both molecules are built up of a tricyclic core with an anti conformation and with cis configurations at the

ISSN 0108-2701 © 1993


[^0]:    * Assuming that the energy corresponding to the conformation found in the crystal is zero.

